首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   69篇
  国内免费   544篇
测绘学   2篇
地球物理   24篇
地质学   908篇
海洋学   1篇
天文学   1篇
综合类   2篇
自然地理   3篇
  2024年   1篇
  2022年   10篇
  2021年   10篇
  2020年   9篇
  2019年   24篇
  2018年   71篇
  2017年   138篇
  2016年   145篇
  2015年   107篇
  2014年   122篇
  2013年   89篇
  2012年   119篇
  2011年   49篇
  2010年   20篇
  2009年   8篇
  2008年   3篇
  2007年   3篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
排序方式: 共有941条查询结果,搜索用时 15 毫秒
1.
Cu and Fe skarns are the world’s most abundant and largest skarn type deposits, especially in China, and Au-rich skarn deposits have received much attention in the past two decades and yet there are few papers focused on schematic mineral deposit models of Cu–Fe–Au skarn systems. Three types of Au-rich deposits are recognized in the Edongnan region, Middle–Lower Yangtze River metallogenic belt: ~140 Ma Cu–Au and Au–Cu skarn deposits and distal Au–Tl deposits; 137–148 Ma Cu–Fe; and 130–133 Ma Fe skarn deposits. The Cu–Fe skarn deposits have a greater contribution of mantle components than the Fe skarn deposits, and the hydrothermal fluids responsible for formation of the Fe skarn deposits involved a greater contribution from evaporitic sedimentary rocks compared to Cu–Fe skarn deposits. The carbonate-hosted Au–Tl deposits in the Edongnan region are interpreted as distal products of Cu–Au skarn mineralization. A new schematic mineral deposit model of the Cu–Fe–Au skarn system is proposed to illustrate the relationship between the Cu–Fe–Au skarn mineralization, the evaporitic sedimentary rocks, and distal Au–Tl deposits. This model has important implications for the exploration for carbonate–hosted Au–Tl deposits in the more distal parts of Cu–Au skarn systems, and Fe skarn deposits with the occurrence of gypsum-bearing host sedimentary rocks in the MLYRB, and possibly elsewhere.  相似文献   
2.
The lithium-rich brine in salt lakes is the main raw material of the world’s lithium products, while the continental geothermal fluids with a high salinity often contain a high concentration of lithium. Continental geothermal system is the focus in the study of geothermal formation mechanism. However, less attention is paid to the system due to the complexity of lithology, and the application of lithium isotopes in this field has not been systematically recognized. The newest application and progress of lithium isotope geochemistry in continental geothermal research in recent years were discussed, the problems in this field were put forward, and future research methods and directions were expected. The study of continental geothermal fluids should attach great importance to the application of Li-B-Sr-U multi-isotopic method, and should also be combined with water-rock reaction experiments under different temperature conditions. Moreover, in the future, the research on continental geothermal system should pay more attention to the various sediment/rock lithium isotopic compositions and their spatio-temporal distribution characteristics in the regional or geothermal field’s scales, mineralogy of reservoir rock, and behaviors of lithium isotopes related to the formation of secondary minerals in the process of water-rock interaction, in order to reveal the complex process of fluid evolution in the geothermal system and provide scientific reference for the exploration, exploitation and utilization of lithium resources in the system.  相似文献   
3.
Three-dimensional (3D) district-scale geoscience information for the Luanchuan Mo district was integrated for understanding the development of its regional geology and ore-forming processes and for decision-making about potential targets for mineral exploration. The methodology and datasets used were: (1) construction of an initial geological model (25 km × 20 km × 2.5 km) using 1:10,000 scale geological map, nine geological cross-sections and gravity and magnetic data; (2) construction of three large-scale Mo deposits model (5 km × 4 km × 2.5 km) using 1:2000 scale geological and topographic maps, 288 boreholes (total core length of 158,700 m), and 32 1:2000 scale cross-sections; (3) 3D inversion of 1:25,000 scale gravity and magnetic data for identification metallogenic anomaly zones which are associated with Jurassic intrusions; (4) extraction of ore-controlling formation and sequence of the Luanchuan Group using the large-scale 3D models of Mo deposits and results of analysis of lithogeochemical samples from outcrops and borehole cores; (5) identification of ore-forming and ore-controlling faults using the large-scale 3D model of Mo deposits and mineralized Jurassic granite porphyry stocks; (6) boost weights-of-evidence and concentration–volume (C–V) fractal analyses to integrate metallogenic information and to identify and classify potential Mo targets. Four classes of exploration targets were identified using C–V modeling and 3D known orebodies model: the first and second class targets are mainly located in three large magma-skarn type deposit camps, occupying ~ 1.4 km3 with total estimated reserve of ~ 2.3 Mt; the third class targets, which are mainly located in Huangbeiling and Yuku deposit camps comprising concealed magma-skarn type deposits, occupy ~ 2.8 km3 and represent a new target exploration zone in the Luanchuan district; the fourth class targets, which are located in the Huoshenmiao, Majuan, and Daping zones, occupy ~ 15 km3 and represent potential mineral resources with likely similar orebody features as the Yuku deposit.  相似文献   
4.
The relationship between plate tectonics and the reworking of continental crust remains controversial. Multistage, hornblende-free, S-type granites across the Malay Peninsula Sn belt are ideal for investigating this research question. Here we present zircon U-Pb ages, in-situ apatite Nd and zircon Hf isotope data, and whole-rock major and trace element data for these S-type granites and spatially associated dykes. Four generations of Permian–Triassic (276–272, 262–260, 231–222, and 202 Ma) S-type granites were identified. The different S-type granites show distinct in-situ zircon Hf and apatite Nd isotopic compositions, implying generation from different sedimentary protoliths. Input of mantle-derived components for the formation of all these S-type granites, further indicating that both continental crustal reworking and growth occurred in the Malay Peninsula during the Permian–Triassic. A 250 Ma dolerite dyke in the Eastern Province was derived from an E-MORB-like mantle source. However, a 202 Ma monzonite dyke in the Western Province, was derived from mafic magmas produced by the melting of enriched mantle, followed by subsequent incorporation of crustal materials. All these S-type granitic magmas were reduced that inherited from sedimentary protoliths, which were favourable for Sn mineralization. Apatite F-Cl concentrations and F/Cl ratios in the S-type granites and related dykes changed systematically through time. We infer that the formation of these S-type granites and related dykes corresponds to the Palaeo-Tethyan evolution (i.e., early subduction of Palaeo-Tethyan oceanic lithosphere and subsequent collision between the Sibumasu and Indochina blocks). Our study also support that multistage S-type granites can be generated in distinct tectonic environments at different times in the same region.  相似文献   
5.
Yudai is a newly discovered copper deposit associated with a porphyritic quartz diorite, in the Kalatag district of the eastern Tianshan, China. SHRIMP U-Pb dating of zircons from the diorite yielded an age of 432 ± 3 Ma. The diorite is peraluminous (ASI = 0.98–1.10), calc-alkaline to tholeiitic with high Al2O3 of 16.6–17.7 wt% and Mg# of 57.4–67.4. Trace element characteristics of the diorite show it is enriched in Ba, K and Sr, and depleted in Nb, Ta, Ti, with a positive Eu anomaly and high Sr/Y and La/Yb ratios. This diorite has positive εNd(t) values ranging from 6.2 to 8.4 with low initial 87Sr/86Sr ratios of 0.704336 to 0.704450. These geochemical and isotopic characteristics indicate that the adakite-like diorite, associated with the copper mineralization, was emplaced in an island arc setting and resulted from partial melting of subducted oceanic plate in a mantle wedge.  相似文献   
6.
7.
The Koru and Tesbihdere mining districts in Biga Peninsula, Northwestern Turkey, consist of twelve deposits covering approximately 12 km2. The epithermal Au-Ag enriched base metal veins and associated low-grade breccia and stockwork at Koru and Tesbihdere are hosted by Oligocene subaerial and calc-alkaline volcanic rocks including basaltic andesite lavas, dacitic lava-tuffs, rhyolitic lava-domes and tuffs. NW- to N-trending strike-slip faults and E- and NE-trending faults constitute the most important ore-controlling structures in the Koru and Tesbihdere districts respectively. In the Koru mining district, galena is the dominant ore mineral in barite-quartz veins containing sphalerite, chalcopyrite, pyrite, bornite, enargite and tennantite. According to base metal content, the Tesbihdere mining district can be subdivided into sphalerite-galena dominated Tesbihdere mineralization and chalcopyrite-pyrite dominated Bakır and Kuyu Zones mineralization. Gold is present in small quantities with maximum 3.14 g/t Au values either as free grains in quartz or as micro inclusions in pyrite and galena. The most widespread silver minerals are polybasite, pearceite, argentite and native silver which commonly occur as replacements of galena, sphalerite and pyrite, and other sulfides, or as fillings of microfractures in sulfides and quartz.Microthermometric measurements of primary liquid-rich fluid inclusions in sphalerite, barite and quartz in Koru indicate that the veins were formed at temperatures between 407 and 146 °C from fluids with salinities between 0.7 and 12.5 wt.% equiv. NaCl. Barite from the Tahtalıkuyu, Kuyutaşı and 5th Viraj mineralization show the highest homogenization temperatures. Fluid inclusion data for ore-stage quartz and sphalerite from the Tesbihdere mining district, indicate that these minerals were deposited at temperatures between 387 and 232 °C from more diluted fluids with moderate salinities between 0.2 and 10.6 wt.% NaCl equiv. Tahtalıkuyu and 5th Viraj mineralization show only boiling trends while Kuyutaşı, Tesbihdere, Bakır and Kuyu Zones mineralization show both boiling and isothermal mixing trends. The O and H isotope compositions of ore fluids from the Tahtalıkuyu (δ18O =  1.40 to 0.25‰; δD =  72.49 to − 52.68‰) and Kuyutaşı (δ18O =  2.29 to 3.59‰; δD =  90.70 to − 70.93‰) mineralization indicate that there was a major contribution from a magmatic component to ore genesis. Based on 9 quartz samples associated with orebodies at the Tesbihdere mining district, the relatively higher δ18O and lower δD isotope compositions from hydrothermal fluids could be attributed to a relatively dilute fluid derived by the mixing with meteoric water. The Pb isotope compositions also reveal that most of the lead in both mining districts is derived from the Oligocene-Miocene magmatic rocks, possibly with smaller contributions from the Eocene magmatic rocks.  相似文献   
8.
Jilin Province in NE China lies on the eastern edge of the Xing–Meng Orogenic Belt. Mineral exploration in this area has resulted in the discovery of numerous large, medium, and small sized Cu, Mo, Au, and Co deposits. To better understand the formation and distribution of both the porphyry and skarn types Cu deposits of the region, we examined the geological characteristics of the deposits and applied zircon U–Pb and molybdenite Re–Os isotope dating to constrain the age of the mineralization. The Binghugou Cu deposit yields a zircon U–Pb age for quartz diorite of 128.1 ± 1.6 Ma; the Chang'anpu Cu deposit yields a zircon U–Pb age for granite porphyry of 117.0 ± 1.4 Ma; the Ermi Cu deposit yields a zircon U–Pb age for granite porphyry of 96.8 ± 1.1 Ma; the Tongshan Cu deposit yields molybdenite Re–Os model ages of 128.7 to 130.2 Ma, an isochron age of 129.0 ± 1.6 Ma, and a weighted mean model age of 129.2 ± 0.7 Ma; and the Tianhexing Cu deposit yields molybdenite Re–Os model ages of 113.9 to 115.2 Ma, an isochron age of 114.7 ± 1.2 Ma, and a weighted mean model age of 114.7 ± 0.7 Ma. The new ages, combined with existing geochronology data, show that intense porphyry and skarn types Cu mineralization was coeval with Cretaceous magmatism. The geotectonic processes responsible for the genesis of the Cu mineralization were probably related to lithospheric thinning. By analyzing the accumulated molybdenite Re–Os, zircon U–Pb, and Ar–Ar ages for NE China, it is concluded that the Cu deposits formed during multiple events coinciding with periods of magmatic activity. We have identified five phases of mineralization: early Paleozoic (~476 Ma), late Paleozoic (286.5–273.6 Ma), early Mesozoic (~228.7 Ma), Jurassic (194.8–137.1 Ma), and Cretaceous (131.2–96.8 Ma). Although Cu deposits formed during each phase, most of the Cu mineralization occurred during the Cretaceous.  相似文献   
9.
刘春花  聂凤军 《地质通报》2015,34(6):1045-1056
拜韦尔特半岛矿产资源主要包括铜、金和石棉,区域地层和构造是控制矿床形成、发展和叠加改造的主要因素。这些矿产资源主要赋存在拜韦尔特海洋带达利吉带圣母玛利亚亚带的早奥陶世潜次火山岩中,包括起源于超俯冲作用带的蛇绿岩套和火山岩盖层。其蛇绿岩套超镁铁堆积岩的热液蚀变岩中产出石棉,火山成因的块状硫化物型(VMS型)铜±金矿产在基性和双峰式火山岩中,金矿产在基性和超基性的热液蚀变岩中。而蛇绿岩套火山岩盖层中则产出与条带状含铁建造(BIF)有关的后生金矿,石英脉型或相关的交代型矿床则大多赋存在蚀变和变形的基性岩中。拜韦尔特半岛的构造样式和几何结构非常复杂。  相似文献   
10.
花山复式岩体位于华北地块南缘,采用LA-ICP-MS技术测得复式岩体中的中细粒似斑状黑云二长花岗岩的锆石U-Pb年龄为128±1Ma,此年龄被解释为成岩年龄。该岩体及邻近的五丈山岩体中花岗岩具有高硅、富碱特征,为准铝-弱过铝质高钾钙碱性系列;在稀土和微量元素上,富集LREE、Rb、Ba、K、Sr等大离子亲石元素,亏损HREE、Zr、Hf、Ta、Nb、P、Ti等高场强元素,总体上Eu异常不明显,显示出I-A过渡型花岗岩的特征。锆石Lu-Hf同位素组成表明,花山花岗岩的ε_Hf(t)主要变化于-25.8~-19.6之间,t_DM2为2.81~2.43Ga,显示源区物质以古老的壳源物质为主,有年轻组分的参与。与岩体外围多金属成矿年龄的对比分析发现,外围金、钼矿床与花山复式岩体的年龄一致,比五丈山岩体晚20~25Ma,表明金、钼矿的形成与花山岩体在时空上联系密切,该岩体可能为成矿提供了热源。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号